FLUOROMONOMERS MANUFACTURING PROCESS VE SOUTH STACK EMISSIONS TEST REPORT TEST DATES: 22-23 MAY 2019

THE CHEMOURS COMPANY FAYETTEVILLE, NORTH CAROLINA

Prepared for:

THE CHEMOURS COMPANY 22828 NC Hwy 87 W Fayetteville, North Carolina 28306

Prepared by:

WESTON SOLUTIONS, INC.

1400 Weston Way P.O. Box 2653 West Chester, Pennsylvania 19380

June 2019

W.O. No. 15418.002.014

TABLE OF CONTENTS

Section

1.	INTR	ODUCTION1
	1.1	FACILITY AND BACKGROUND INFORMATION1
	1.2	TEST OBJECTIVES1
	1.3	TEST PROGRAM OVERVIEW1
2.	SUMN	MARY OF TEST RESULTS4
3.	PROC	CESS DESCRIPTIONS
	3.1	FLUOROMONOMERS
	3.2	PROCESS OPERATIONS AND PARAMETERS
4.	DESC	RIPTION OF TEST LOCATIONS
	4.1	VE SOUTH STACK
5.	SAMI	PLING AND ANALYTICAL METHODS8
	5.1	STACK GAS SAMPLING PROCEDURES
		5.1.1 Pre-Test Determinations
	5.2	STACK PARAMETERS
		5.2.1 EPA Method 00108
		5.2.2 EPA Method 0010 Sample Recovery10
		5.2.3 EPA Method 0010 Sample Analysis
	5.3	GAS COMPOSITION
6.	DETA	AILED TEST RESULTS AND DISCUSSION15
APPE	NDIX /	A PROCESS OPERATIONS DATA
	NDIX I	
	NDIX (

i

- APPENDIX D SAMPLE CALCULATIONS
- APPENDIX E EQUIPMENT CALIBRATION RECORDS
- APPENDIX F LIST OF PROJECT PARTICIPANTS

LIST OF FIGURES

Title	Page
Figure 4-1 VE South Stack Test Port and Traverse Point Location	7
Figure 5-1 EPA Method 0010 Sampling Train	9
Figure 5-2 HFPO Dimer Acid Sample Recovery Procedures for Method 0010	

LIST OF TABLES

Title	Page
Table 1-1 Sampling Plan for VE South Stack	
Table 2-1 Summary of HFPO Dimer Acid Test Results	4
Table 6-1 Summary of HFPO Dimer Acid Test Data and Test Results VE South Stacl	s 16

1. INTRODUCTION

1.1 FACILITY AND BACKGROUND INFORMATION

The Chemours Fayetteville Works (Chemours) is located in Bladen County, North Carolina, approximately 10 miles south of the city of Fayetteville. The Chemours operating areas on the site include the Fluoromonomers, IXM and Polymer Processing Aid (PPA) manufacturing areas, Wastewater Treatment, and Powerhouse.

Chemours contracted Weston Solutions, Inc. (Weston) to perform HFPO Dimer Acid emission testing on the Vinyl Ethers (VE) South Stack. Testing was performed on 22 and 23 May 2019 and generally followed the "Emissions Test Protocol" reviewed and approved by the North Carolina Department of Environmental Quality (NCDEQ). This report provides the results from the emission test program.

1.2 TEST OBJECTIVES

The specific objectives for this test program were as follows:

- Measure the emissions concentrations and mass emissions rates of HFPO Dimer Acid from the VE South stack which is located in the Fluoromonomers process area.
- Monitor and record process data in conjunction with the test program.
- Provide representative emissions data.

1.3 TEST PROGRAM OVERVIEW

During the emissions test program, the concentrations and mass emissions rates of HFPO Dimer Acid were measured on the VE South Stack.

Table 1-1 provides a summary of the test locations and the parameters that were measured along with the sampling/analytical procedures that were followed. Section 2 provides a summary of test results. A description of the process is provided in Section 3. Section 4 provides a description of the test location. The sampling and analytical procedures are provided in Section 5. Detailed test results and discussion are provided in Section 6.

1

Appendix C includes the summary reports for the laboratory analytical results. The full laboratory data package is provided in electronic format and on CD with each hard copy.

Sampling Point & Location		VE S	outh Stack		
Number of Tests:		3 (VE	South Stack)	
Parameters To Be Tested:	HFPO Dimer Acid (HFPO-DA)	Volumetric Flow Rate and Gas Velocity	Carbon Dioxide	Oxygen	Water Content
Sampling or Monitoring Method	EPA M-0010	EPA M1, M2, M3A, and M4 in conjunction with M-0010 tests	EPA N	13/3A	EPA M4 in conjunction with M-0010 tests
Sample Extraction/ Analysis Method(s):	LC/MS/MS	NA ⁶	N	A	NA
Sample Size	$> 1m^{3}$	NA	NA	NA	NA
Total Number of Samples Collected ¹	3	3	3	3	3
Reagent Blanks (Solvents, Resins) ¹	1 set	0	0	0	0
Field Blank Trains ¹	1 per source	0	0	0	0
Proof Blanks ¹	1 per train	0	0	0	0
Trip Blanks ^{1,2}	1 set	0	0	0	
Lab Blanks	1 per fraction ³	0	0	0	0
Laboratory or Batch Control Spike Samples (LCS)	1 per fraction ³	0	0	0	0
Laboratory or Batch Control Spike Sample Duplicate (LCSD)	1 per fraction ³	0	0	0	0
Media Blanks	1 set ⁴	0	0	0	0
Isotope Dilution Internal Standard Spikes	Each sample	0	0	0	0
Total No. of Samples	75	3	3	3	3

Table 1-1Sampling Plan for VE South Stack

Key:

¹ Sample collected in field.

² Trip blanks include one XAD-2 resin module and one methanol sample per sample shipment.

³ Lab blank and LCS/LCSD includes one set per analytical fraction (front half, back half and condensate).

⁴ One set of media blank archived at laboratory at media preparation.

⁵ Actual number of samples collected in field.

⁶ Not applicable.

2. SUMMARY OF TEST RESULTS

Three tests were performed on the VE South stack. Table 2-1 provides a summary of the HFPO Dimer Acid emission test results. Detailed test results summaries are provided in Section 6.

It is important to note that emphasis is being placed on the characterization of the emissions based on the stack test results. Research conducted in developing the protocol for stack testing HFPO Dimer Acid Fluoride, HFPO Dimer Acid Ammonium Salt and HFPO Dimer Acid realized that the resulting testing, including collection of the air samples and extraction of the various fraction of the sampling train, would result in all three compounds being expressed as simply the HFPO Dimer Acid. However, it should be understood that the total HFPO Dimer Acid results provided on Table 2-1 and in this report include a percentage of each of the three compounds.

Table 2-1

Sauraa	Dun No	Emission Rates									
Source	Run No.	lb/hr	g/sec								
	1	3.79E-03	4.78E-04								
VE South Stack	2	1.19E-03	1.50E-04								
VE South Stack	3	1.56E-03	1.96E-04								
	Average	2.18E-03	2.75E-04								

Summary of HFPO Dimer Acid Test Results

3. PROCESS DESCRIPTIONS

The Fluoromonomers area is included in the scope of this test program.

3.1 FLUOROMONOMERS

These facilities produce a family of fluorocarbon compounds used to produce Chemours products such as Teflon® Polymers and Viton®, as well as sales to outside customers.

The VE South Waste Gas Scrubber is vented to the process stack (NEP-Hdr2). In addition, the following building air systems are vented to this stack:

- RV Catch Pots
- Tower HVAC
- Nitrogen Supply to Catch Tanks
- Catalyst Feed Tank Pot Charge Vent

3.2 PROCESS OPERATIONS AND PARAMETERS

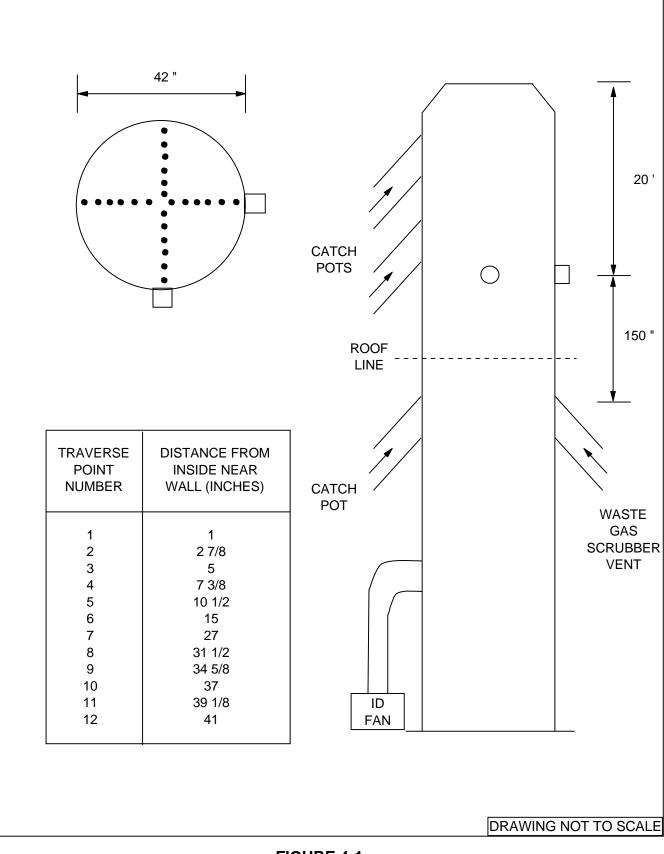
Source	Operation/Product	Batch or Continuous
VE South	PMVE/PEVE	Semi-continuous – Condensation is continuous, Two Agitated Bed Reactors are batch for 30-40 mins at end of each run, Refining (ether column) is batch

During the test program, the following parameters were monitored by Chemours and are included in Appendix A.

- Fluoromonomers Processes
 - VE South Waste Gas Scrubber
 - Caustic recirculation flow rate

4. DESCRIPTION OF TEST LOCATIONS

4.1 VE SOUTH STACK


Two 6-inch ID test ports are installed on the 42-inch ID steel stack. The ports are placed 150 inches (3.6 diameters) from the location where the waste gas scrubber vent enters the stack and 20 feet (5.7 diameters) from the stack exit.

Per EPA Method 1, a total of 24 traverse points (12 per axis) were used for M0010 isokinetic sampling. It should be noted that near the port locations are a number of small ducts leading to the stack. These are catch pots which, under normal operation, do not discharge to the stack. They are used to vent process gas to the stack in the event of a process upset. For the purpose of test port location, and given the fact that there is no flow from these catch pots, they are not considered a flow contributor or a disturbance.

6

See Figure 4-1 for a schematic of the test port and traverse point locations.

Note: All measurements at the test location were confirmed prior to sampling.

FIGURE 4-1 VE SOUTH STACK TEST PORT AND TRAVERSE POINT LOCATION

7

5. SAMPLING AND ANALYTICAL METHODS

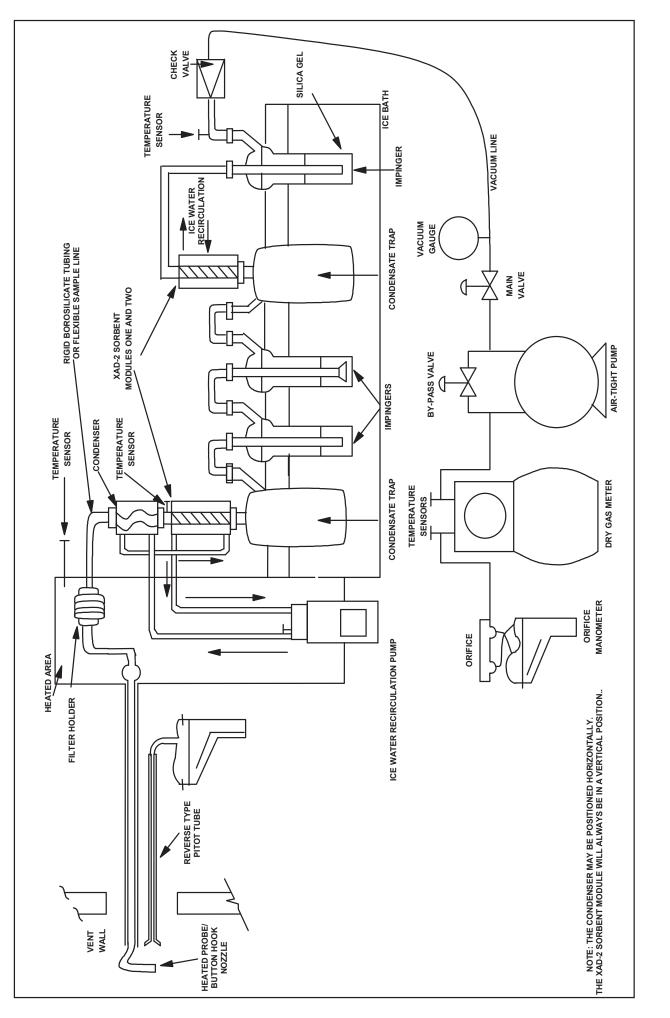
5.1 STACK GAS SAMPLING PROCEDURES

The purpose of this section is to describe the stack gas emissions sampling train and to provide details of the stack sampling and analytical procedures utilized during the emissions test program.

5.1.1 Pre-Test Determinations

Preliminary test data were obtained at the test location. Stack geometry measurements were measured and recorded, and traverse point distances verified. A preliminary velocity traverse was performed utilizing a calibrated S-type pitot tube and an inclined manometer to determine velocity profiles. Flue gas temperatures were observed with a calibrated direct readout panel meter equipped with a chromel-alumel thermocouple. Preliminary water vapor content was estimated by wet bulb/dry bulb temperature measurements.

A check for the presence or absence of cyclonic flow was previously conducted at the test location. The cyclonic flow check was negative ($< 20^\circ$) verifying that the source was acceptable for testing.


Preliminary test data was used for nozzle sizing and sampling rate determinations for isokinetic sampling procedures.

Calibration of probe nozzles, pitot tubes, metering systems, and temperature measurement devices was performed as specified in Section 5 of EPA Method 5 test procedures.

5.2 STACK PARAMETERS

5.2.1 EPA Method 0010

The sampling train utilized to perform the HFPO Dimer Acid sampling was an EPA Method 0010 train (see Figure 5-1). The Method 0010 consisted of a borosilicate nozzle that attached directly to a heated borosilicate probe. In order to minimize possible thermal degradation of the HFPO Dimer Acid, the probe and particulate filter were heated above stack temperature to minimize water vapor condensation before the filter. The probe was connected directly to a heated borosilicate filter holder containing a solvent extracted glass fiber filter.

IASDATA/CHEMOURS/15418.002.014/FIGURE 5-1 METHOD 0010

FIGURE 5-1 EPA METHOD 0010 SAMPLING TRAIN

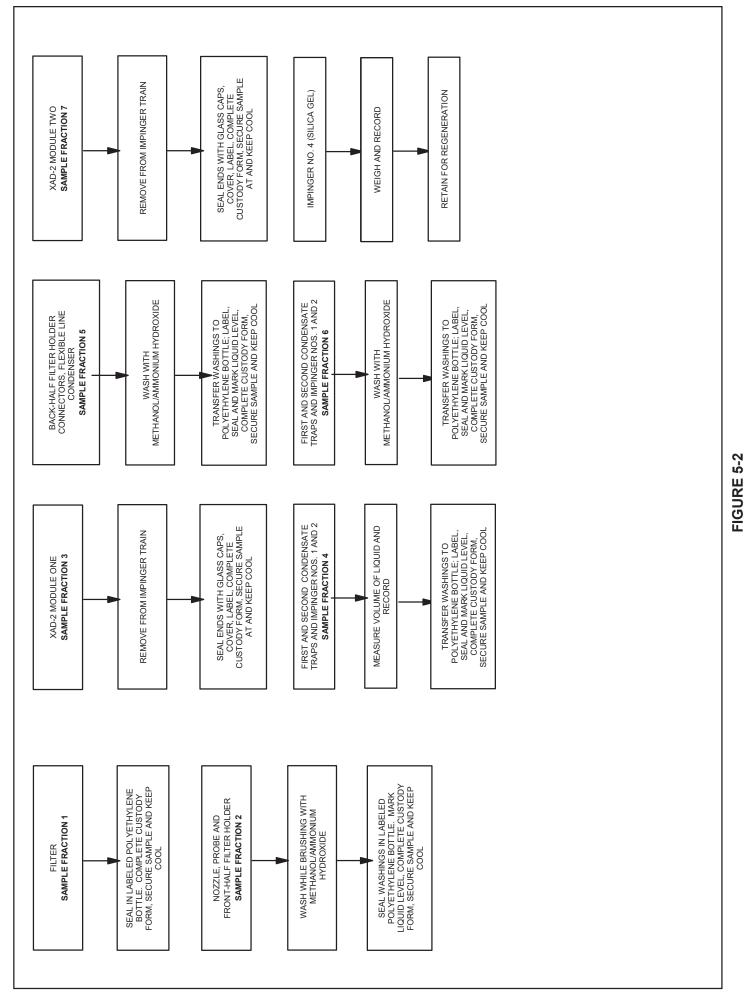
A section of borosilicate glass or flexible polyethylene tubing connected the filter holder exit to a Grahm (spiral) type ice water-cooled condenser, an ice water-jacketed sorbent module containing approximately 40 grams of XAD-2 resin. The XAD-2 resin tube was equipped with an inlet temperature sensor. The XAD-2 resin trap was followed by a condensate knockout impinger and a series of two impingers that contained 100 mL of high-purity distilled water. The train also included a second XAD-2 resin trap behind the impinger section to evaluate possible sampling train breakthrough. Each XAD-2 resin trap was connected to a 1-liter condensate knockout trap. The final impinger contained 300 grams of dry pre-weighed silica gel. All impingers and the condensate traps were maintained in an ice bath. Ice water was continuously circulated in the condenser and the XAD-2 module to maintain method-required temperature. A control console with a leakless vacuum pump, a calibrated orifice, and dual inclined manometers was connected to the final impinger via an umbilical cord to complete the sample train.

HFPO Dimer Acid Fluoride (CAS No. 2062-98-8) that is present in the stack gas is expected to be captured in the sampling train along with HFPO Dimer Acid (CAS No. 13252-13-6). HFPO Dimer Acid Fluoride underwent hydrolysis instantaneously in water in the sampling train and during the sample recovery step, and was converted to HFPO Dimer Acid such that the amount of HFPO Dimer Acid emissions represented a combination of both HFPO Dimer Acid Fluoride and HFPO Dimer Acid.

During sampling, gas stream velocities were measured by attaching a calibrated S-type pitot tube into the gas stream adjacent to the sampling nozzle. The velocity pressure differential was observed immediately after positioning the nozzle at each traverse point, and the sampling rate adjusted to maintain isokineticity at $100\% \pm 10$. Flue gas temperature was monitored at each point with a calibrated panel meter and thermocouple. Isokinetic test data was recorded at each traverse point during all test periods, as appropriate. Leak checks were performed on the sampling apparatus according to reference method instructions, prior to and following each run, component change (if required) or during midpoint port changes.

5.2.2 EPA Method 0010 Sample Recovery

At the conclusion of each test, the sampling train was dismantled, the openings sealed, and the components transported to the field laboratory trailer for recovery.


A consistent procedure was employed for sample recovery:

- 1. The two XAD-2 covered (to minimize light degradation) sorbent modules (1 and 2) were sealed and labeled.
- 2. The glass fiber filter(s) were removed from the holder with tweezers and placed in a polyethylene container along with any loose particulate and filter fragments.
- 3. The particulate adhering to the internal surfaces of the nozzle, probe and front half of the filter holder were rinsed with a solution of methanol and ammonium hydroxide into a polyethylene container while brushing a minimum of three times until no visible particulate remained. Particulate adhering to the brush was rinsed with methanol/ ammonium hydroxide into the same container. The container was sealed.
- 4. The volume of liquid collected in the first condensate trap was measured, the value recorded, and the contents poured into a polyethylene container.
- 5. All train components between the filter exit and the first condensate trap were rinsed with methanol/ammonium hydroxide. The solvent rinse was placed in a separate polyethylene container and sealed.
- 6. The volume of liquid in impingers one and two, and the second condensate trap, were measured, the values recorded, and the sample was placed in the same container as Step 4 above, then sealed.
- 7. The two impingers, condensate trap, and connectors were rinsed with methanol/ ammonium hydroxide. The solvent sample was placed in a separate polyethylene container and sealed.
- 8. The silica gel in the final impinger was weighed and the weight gain value recorded.
- 9. Site (reagent) blank samples of the methanol/ammonium hydroxide, XAD resin, filter and distilled water were retained for analysis.

Each container was labeled to clearly identify its contents. The height of the fluid level was marked on the container of each liquid sample to provide a reference point for a leakage check during transport. All samples were maintained cool.

During the VE South test campaign, a Method 0010 blank train was set up near the test location, leak-checked and recovered along with the respective sample train. Following sample recovery, all samples were transported to TestAmerica Laboratories, Inc. (TestAmerica) for sample extraction and analysis.

See Figure 5-2 for a schematic of the Method 0010 sample recovery process.

HFPO DIMER ACID SAMPLE RECOVERY PROCEDURES FOR METHOD 0010

5.2.3 EPA Method 0010 – Sample Analysis

Method 0010 sampling trains resulted in four separate analytical fractions for HFPO Dimer Acid analysis according to SW-846 Method 3542:

- Front-half Composite—comprised of the particulate filter, and the probe, nozzle, and front-half of the filter holder solvent rinses;
- Back-half Composite—comprised of the first XAD-2 resin material and the back-half of the filter holder with connecting glassware solvent rinses;
- Condensate Composite—comprised of the aqueous condensates and the contents of impingers one and two with solvent rinses;
- Breakthrough XAD-2 Resin Tube—comprised of the resin tube behind the series of impingers.

The second XAD-2 resin material was analyzed separately to evaluate any possible sampling train HFPO-DA breakthrough.

The front-half and back-half composites and the second XAD-2 resin material were placed in polypropylene wide-mouth bottles and tumbled with methanol containing 5% NH4OH for 18 hours. Portions of the extracts were processed analytically for the HFPO dimer acid by liquid chromatography and duel mass spectroscopy (HPLC/MS/MS). The condensate composite was concentrated onto a solid phase extraction (SPE) cartridge followed by desorption from the cartridge using methanol. Portions of those extracts were also processed analytically by HPLC/MS/MS.

Samples were spiked with isotope dilution internal standard (IDA) at the commencement of their preparation to provide accurate assessments of the analytical recoveries. Final data was corrected for IDA standard recoveries.

TestAmerica developed detailed procedures for the sample extraction and analysis for HFPO Dimer Acid. These procedures were incorporated into the test protocol.

5.3 GAS COMPOSITION

The Weston mobile laboratory equipped with instrumental analyzers was used to measure carbon dioxide (CO_2) and oxygen (O_2) concentrations. An integrated gas sample was collected from the exhaust of the Method 0010 sample console.

The oxygen and carbon dioxide content of the stack gas was measured according to EPA Method 3/3A procedures. A Servomex Model 4900 analyzer (or equivalent) was used to measure oxygen content. A Servomex Model 4900 analyzer (or equivalent) was used to measure carbon dioxide content of the stack gas. Both analyzers were calibrated with EPA Protocol gases prior to the start of the test program and performance was verified by calibration checks before and after each test run.

6. DETAILED TEST RESULTS AND DISCUSSION

Preliminary testing and the associated analytical results required significant sample dilution to bring the HFPO Dimer Acid concentration within instrument calibration; therefore, sample times and sample volumes were reduced for the formal test program. This was approved by the North Carolina Department of Environmental Quality (NCDEQ).

Each test was a minimum of 96 minutes in duration. A total of three test runs were performed on the VE South stack. During Run 3, a power outage occurred for approximately one minute and then the test run was resumed without further incident.

Table 6-1 provides detailed test data and test results for the VE South stack.

The Method 3A sampling during all tests indicated that the O_2 and CO_2 concentrations were at ambient air levels (20.9% O_2 , 0% CO_2), therefore, 20.9% O_2 and 0% CO_2 values were used in all calculations.

TABLE 6-1 CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS VE SOUTH STACK

Test Data

Test Data		_	
Run number	1	2	3
Location	VE South Stack	VE South Stack	VE South Stack
Date	05/22/19	05/23/19	05/23/19
Time period	1341-1529	1042-1230	1341-1536
SAMPLING DATA:			
Sampling duration, min.	96.0	96.0	96.0
Nozzle diameter, in.	0.300	0.300	0.300
Cross sectional nozzle area, sq.ft.	0.000491	0.000491	0.000491
Barometric pressure, in. Hg	30.20	30.28	30.28
Avg. orifice press. diff., in H_2O	1.47	1.27	1.53
Avg. dry gas meter temp., deg F	84.0	93.1	101.0
Avg. abs. dry gas meter temp., deg. R	544	553	561
Total liquid collected by train, ml	41.1	27.6	47.1
Std. vol. of H ₂ O vapor coll., cu.ft.	1.9	1.3	2.2
Dry gas meter calibration factor	1.0107	1.0107	1.0107
Sample vol. at meter cond., dcf	60.826	57.096	63.015
Sample vol. at std. cond., dscf ⁽¹⁾	60.423	55.898	60.861
Percent of isokinetic sampling	103.5	97.6	103.1
GAS STREAM COMPOSITION DATA:			
CO_2 , % by volume, dry basis	0.0	0.0	0.0
O ₂ , % by volume, dry basis	20.9	20.9	20.9
N ₂ , % by volume, dry basis	79.1	79.1	79.1
Molecular wt. of dry gas, lb/lb mole	28.84	28.84	28.84
H_20 vapor in gas stream, prop. by vol.	0.031	0.023	0.035
Mole fraction of dry gas	0.969	0.977	0.965
Molecular wt. of wet gas, lb/lb mole	28.50	28.59	28.45
GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:			
Static pressure, in. H ₂ O	0.55	0.51	0.50
Absolute pressure, in. Hg	30.24	30.32	30.32
Avg. temperature, deg. F	87	90	94
Avg. absolute temperature, deg.R	547	550	554
Pitot tube coefficient	0.84	0.84	0.84
Total number of traverse points	24	24	24
Avg. gas stream velocity, ft./sec.	21.9	21.3	22.4
Stack/duct cross sectional area, sq.ft.	9.62	9.62	9.62
Avg. gas stream volumetric flow, wacf/min.	12620	12307	12951
Avg. gas stream volumetric flow, dscf/min.	11918	11697	12055

 $^{(1)}$ Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 in Hg (760 mm Hg)

TABLE 6-1 (cont.) CHEMOURS - FAYETTEVILLE, NC SUMMARY OF HFPO DIMER ACID TEST DATA AND TEST RESULTS VE SOUTH STACK

TEST DATA			
Run number	1	2	3
Location	VE South Stack	VE South Stack	VE South Stack
Date	05/22/19	05/23/19	05/23/19
Time period	1341-1529	1042-1230	1341-1536
LABORATORY REPORT DATA, ug.			
HFPO Dimer Acid	145.4000	42.9100	59.5300
EMISSION RESULTS, ug/dscm.			
HFPO Dimer Acid	84.96	27.10	34.53
EMISSION RESULTS, lb/dscf.			
HFPO Dimer Acid	5.31E-09	1.69E-09	2.16E-09
EMISSION RESULTS, lb/hr.			
HFPO Dimer Acid	3.79E-03	1.19E-03	1.56E-03
EMISSION RESULTS, g/sec.			
HFPO Dimer Acid	4.78E-04	1.50E-04	1.96E-04

APPENDIX A PROCESS OPERATIONS DATA

Date: 5/22/2019																															
Time	10	000			1	100			1	200				130	0			14	400			1	500		1	1600	0		17	'00	
Stack Testing																	RUN	11-:	134:	L-152	29										
VES Product	PM/PE																														
VES Precursor																															
VES Condensation (HFPO)																															
VES ABR (East)																															
VES ABR (West)																				l	Burne	out									
VES Refining																															
VES WGS Recirculation Flow															18	8,50	0 kg	/h													
Dimer ISO venting																															

Date: 5/23/2019																													 						
Time	8	00			9	00			10	000			11	00		12	00		13	300			14	100			15	500		16	600		1	700	
Stack Testing												RUN	2 - 1	<mark>042-</mark> 2	1230							RUN	 3 - 1	<mark>1341</mark>	-153	6									
VES Product		PM/PE																																	
VES Precursor																																			
VES Condensation (HFPO)																																			
VES ABR (East)																																			
VES ABR (West)																			Bur	nout	:														
VES Refining																		_									-					_			-
VES WGS Recirculation Flow		18,500 kg/h																																	
Dimer ISO venting																																			

APPENDIX B RAW AND REDUCED TEST DATA

Client	encurs		e Point Da	Operato	rom	-	
Loaction/Plant F-cc Source / L=	South		W	Da O. Numb	er 15419,002	మి. చం01	
Duct TypeImage: CirculTraverse TypeImage: CirculPartic			Rectangular Duct Velocity Traverse	4	Indicate appropriate type		
nce from far wall to outside of port (in.)	= c 0			F	low Disturbances		_
Depth (in.) = D			Upstream - A (ft)	64 3		720	
n of Duct, diameter (in.) = C-D of Duct (ft ²)	9.62		Downstream - B (Upstream - A (du		ers)	75	-
Traverse Points	24/		Downstream - B (- 3.6	
Traverse Points per Port	12				Diagram of Stack		T
Diameter (in.)(Flange-Threaded-Hole	·····				rt r	f	
orail Length					1 1 20		
angular Ducts Only n of Duct, rectangular duct only (in.)					1 10 110		
Ports (rectangular duct only)				2			
valent Diameter = (2*L*W)/(L+W)							
				48.		$\overline{}$	
Traverse Point Location	s			- ¥		11	
Distance from			1	0			
erse Inside Duct Distan int % of Duct Wall (in)	Port (in)						
21002	160 22	Ó				11.0.	
	19-7-20-1				1 16 56	ullion	
2 6,7 2,81	\mathcal{X}						
3 11,8 4.96 c	23.93/2	, Mu	Duct Diar	neters Upst	ream from Flow Disturbance (I	Distance A)	
17777.4	26.7		0.5	1.0		2.0 2.5	2
5 25.0 10.5	29 1/2	5	0	I			
2510 14 95	3.3 3/4 74	RA					
)		Stack Dia	ameter > 24 inches	- Disturbance	
64.4 27.0	50.5	4	0			* L	
3,5	50.5					it	
82,334.57	5308		Minimum Numb	er of		g 🛊 Site	
0 282 37.0	560	3	Particulate Traver	e Points			
023 20 2	58.10		24 (circular) 25 (rect	angular ducts)		Disturbance	
	$\overline{(\mathcal{O})}$]	20		
2 97,1 97.1	60.0	2	o	L	16		
CEM 3 Point(Long Measurment Line) Stratificato	Point Locations		Traverse Points for	Velocity			
1 0.167						12	
2 0.50					n, Contraction, etc.)	8 (circular) 9 (rectangular)	
3 0.833			(Disturbance =Di	no, expansio		Equivalent Dis + 12 - 24 inches	
Note: If stack dia < 12 inch use EPA				. 1	Stack Dia or	Equivalent Uis * 12 - 24 incres	
(Sample port upstream of pito e: If stack dia >24" then adjust traverse poir	• •		° [
If stack dia <24" then adjust traverse point			2 3	5	6 7	6 9 1 0	
Traverse Point Location Percent	of Stack -Circular				am from Flow Disturbance (Distanc	-	
Number of Traverse Pr 1 2 3 4 5 6 7	bints 8 9 10 11 1.	,	<u>_</u>	raverse Point	Location Percent of Stack -Rectan Number of Traverse Points	gular	
1 14.6 6.7 44	3.2 2.6 2	1	T 1 250	3 4 16.7 12.5		0 11 12 0 4.5 4.2	
	10.5 8.2 6 19.4 14.6 11		r 2 75.0	50.0 37.5	30.0 25.0 21.4 18.8 16.7 15	0 13.6 12.5	
4 93.3 70.4	32.3 22.6 17 57.7 34.2 2			83.3 62.5 87.5	70.0 58.3 50.0 43.8 38.9 35	0 31.8 29.2	
6 95.6	80.6 65.8 35	6	r c 5 s a 6	1		0 40.9 37.5 0 50.0 45.8	
	89.5 77.4 64 96.8 85.4 7		e t 7			0 59.1 54.2	
9	91.8 82	3	0 9		94.4 8	0 77.3 70.8	
10	97.4 88		n 11		99	4.0 86.4 79.2 95.5 8 7.5	
12	97		t 12		·····	95.8	

CHEMOURS - FAYETTEVILLE, NC INPUTS FOR HFPO DIMER ACID CALCULATIONS VE SOUTH STACK

Test Data

Run number	1	2	3
Location	VE South Stack	VE South Stack	VE South Stack
Date	05/22/19	05/23/19	05/23/19
Time period	1341-1529	1042-1230	1341-1536
Operator	JDO/KA	JDO/KA	JDO/KA
Inputs For Calcs.			
Sq. rt. delta P	0.38206	0.37276	0.38979
Delta H	1.4679	1.2708	1.5333
Stack temp. (deg.F)	87.3	89.9	94.3
Meter temp. (deg.F)	84.0	93.1	101.0
Sample volume (act.)	60.826	57.096	63.015
Barometric press. (in.Hg)	30.20	30.28	30.28
Volume H ₂ O imp. (ml)	26.0	12.3	27.0
Weight change sil. gel (g)	15.1	15.3	20.1
% CO ₂	0.0	0.0	0.0
% O ₂	20.9	20.9	20.9
% N ₂	79.1	79.1	79.1
Area of stack (sq.ft.)	9.620	9.620	9.620
Sample time (min.)	96.0	96.0	96.0
Static pressure (in. H_2O)	0.55	0.51	0.50
Nozzle dia. (in.)	0.300	0.300	0.300
Meter box cal.	1.0107	1.0107	1.0107
Cp of pitot tube	0.84	0.84	0.84
Traverse points	24	24	24

						· .		antina di seconda di s Nationali di seconda di s	
							But	àr	
ISOKINET	TIC FIELD DA	ATA SHEET		EPA Method	d 0010 - HF	PO Dimer A	Acid U	Page	l of l
Client W.O.#	Chemours 15418.002.014.0001	Stack	Conditions Assumed Actual	Meter Box ID Meter Box Y	λ_{1}	1.0107	<u>^</u>	K Factor 10.	^
Project ID	Chemours		-3	Meter Box Del H	2,08	63		Initial Mi	id-Point Final
Mode/Source ID Samp. Loc. ID	VE South - Scrubber STK	Impinger Vol (ml) Silica gel (g)		Probe ID / Length Probe Material	Ā		Sample Train (ft³) ⊥eak Check @ (in Hg)	0,210 40	504 -004
Run No.ID	1	CO2, % by Vol 14		Pitot / Thermocouple ID	694	F	Pitot leak check good	yes / no y	es / no (ves y no
Test Method ID Date ID	M0010 21MAY2019 ✓	O2, % by Vol Temperature (°F)	10,71 GR	Pitot Coefficient Nozzie ID	- <u>1300</u>		Pitot Inspection good Method 3 System good		es / no ves / no
Source/Location Sample Date	VE South Stack	Meter Temp (°F) ✓ Static Press (in H₀O)	84 85	Nozzle Measurements	.300 .30	x ,300 I	Temp Check	Pre-Test Se	
Baro. Press (in Hg)	5/22/19	✓ Static Press (in H₂O)	_	Avg Nozzle Dia (in) Area of Stack (ft ²)	9.620 2		Veter Box Temp Reference Temp	87	
Operator	JPO / KA	Ambient Temp (°F)	<u> </u>	Sample Time	96 10		Pass/Fail (+/- 2 ⁰)	Fail	Pass / Fail
	11-11			Total Traverse Pts	241/12	fur your)	Temp Change Respons	e î Ber no	yes:/mo
TRAVERSE	MPLE CLOCK TIME IE (min) (plant time) P	design of the second	IFICE DRY GAS METER SSURE READING (ft ³)	STAUK	(°F) PRO	2 to 3 to Objective and State Sta	IMPINGER SAMPLI		COMMENTS
POINT NO.	0 13417		(H2O) 574 570	TEMP (°F)	ТЕМР	(°F) (F)	(oF) (in Hg)		
AI		al7 4	62 27.1	88 8	34. 11	7 120	68 4	64	524,534
$\frac{2}{3}$	8	-15 1,	5 19,6	87 8	37 11	7 170	67 4	38	
4 1	-		U 34.2	999 999	83 11	3 123	62 4	50	
	o l	16 1	6 3619	28	85 11	7 120	60 4	44	
$-\frac{1}{7}$		1/2 1.	b 40,0	89	<u>85</u> 71 67 11	8/18	61 9	53	29.46
	12	14 1	4 45,0	88	85 11	1 122	60 4 30 3	33	1 29,191
	6	12 1	1 47.6	88	95 11	7 121	59 5.0	98	V ~ 101/0
	10	10 1	$\begin{array}{c c} 0 & 49.6 \\ 9.0 & 51.5 \end{array}$	87	84 11	7 120	60 36	42	
	8 1429	.09	95 553.720	87	35 11	120	$\frac{60}{50}$	50	553.712
0 4	1441	120 d.	553.85			1 132	10 4		552-858
2 8		19 1.	9 59 3	87	87 11	6 137	68 7.5		
3 12		19 1,	9 62.3	34	95 11	7 170	<u></u>	5/	
		19 4	976 63,4 976 68°/	87	34 11	2 119	53 4.9	50	€
6 3	4	19 1.	86 7919		83 11	7 178	764 4.6	53	31.630
$ -\frac{7}{2} ^{2}$	8		67 737	87 87 87 87 87 87		7 121	61 7.9	52 55 57	
	<u>, , , , , , , , , , , , , , , , , , , </u>		$\frac{17}{21}$ $\frac{7}{18}$	8-1	83 44	7 119	67 9 67 3,5 67 3,5 67 3,5 67 3,5 67 3,5 7	57	
10 1	10	12 1.	18 80.8	87	82 11	5 125	64 30	55	
	18 15291		03 832	87	$ \begin{array}{c} 82 & 11 \\ 92 & 11 \\ 92 & 11 92 & 11 $	7 120		- 5 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	
				¿ 3 1 §7,333 83.4	g Im / Min/M	7 120 1ax Min/Max	6777 Max Vac 684.5	Min/Max	\$ 85, 98
VXI-SJ	EN :1479	, 149 (.4	retta.H Total Volume		58 ° 117/1	1ax Min/Max 18 118/123			
	1.307	Avg Detta P Avg D 149 1.4 vvg Sqrt Detta P Avg Sq .380 1.2	rt Del H CALL Comments: D 50	103.268	-			od 0010 from EPA SW-8	146 - h
	1000	<u> </u>				103.5	i) M	1418 02	an
				23		711 0	0 1-0	60.427	3 Vin Mind
									MAA

					BU		W A
LISOKINETIC FIELD Client W.O.# Project ID Mode/Source ID Samp. Loc. ID Run No.ID Test Method ID Date ID Source/Location Sample Date Baro. Press (in Hg) Operator	Stack Cond 0001 % Molsture ubber Impinger Vol (ml) Silica gel (g) CO2, % by Vol 02, % by Vol 9 Temperature (°F) ack Meter Temp (°F) Static Press (in H ₂ O)		$\begin{array}{c} & & & & \\ \text{el H} & & & \\ \text{angth} & & \\ \text{ial} & & \\ \text{occouple IP} & & & \\ \text{orements} & & & \\ \text{urements} & & & \\ \text{Dia (in)} & & & \\ \text{c(ft^2)} & & & & \\ \end{array}$	0107 0197 0868 161	1 (1		s / no (057 no s / no (057 no s / no (057 no s / no (057 no
TRAVERSE SAMPLE CLOCK TH		Total Travers		FILTER	Temp Change Response	AUX	yes / no
POINT NO. TIME (min) (plant tim	P (in H2O) Delta H (in H2C	186.064		MP (oF)	EXIT TEMP TRAIN VA (oF) (in Hg)	CO CONS M. CA H ~ A A MORE SERVICES	COMMENTS
<u><u>R</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u></u>	-15 1.35	98.5 90	89 1 80 1	17 /17 17 118	67 3.3	64	586-864
$\begin{array}{c c} & 5 & 1 \\ \hline & 4 & 1 \\ \hline & 5 & 7 \\ \hline \end{array}$	15 1.35 15 1.35	93.4 29 95.9 49		17 117	66 3.5	59	
6 27	•17 1.53 •17 1.53 •16 1.44	94.4 49 01.0 89 03.4 89	445 1	20 123 20 120	66 3.5 67 3.5	56	127,156
<u>9</u> 37 936	014 1.26 012 1.04	05.4 49	<u>49</u> i	20 116 21 122 21 119	64 4 68 3.5 64 3	61 55 54	
10 40 11 47	.10 .10	10.1 49	90 1		68 2.5	56	(11 0 20
		6/3,820 39		ors 1.79	67 3	<u>45</u>	611.020
B / 4 /147		16,7 90	94 1	11 119 20 123	66 4	62	614.020
4 16	- 11 1.77	24,0 91	99	19 112	66 4	60	
<u> </u>	15 1.35	77.1 G1 19.14 41 31.8 90	9.4 1	$\frac{10}{10} \frac{1}{10}$ $\frac{10}{10} \frac{1}{10}$	67 4	60	29,34
8 32	114 1.26	74,0 91 74,0 91 76.4 91	100 1	18 119	60 4	61 62	
10 40	•i] [1.09 1.11 1.09	78.7 91 40,9 91	101 1	12 118	66 73	60	
19 40, 12 30	Avg Deita P Avg Deita H	643.360 91 Total Volume 57,0% Avg Ts	151 1	20 120 n/Max Min/Max	62 3 62 3 Max Max Vac	60 60 Min/Max	
WESTERN	Avg Sqrt Delta P Avg Sqrt Del H	S7,076 Comments:				0010 from EPA SW-84	6
	137270]	97	,0 Ju			

				1160									
	IC FIELD D	ATA SHE			EPA Me	ethod 0010) Dimer	Acid	A		Page of _	7
nt D.#	Chemours 15418.002.014.000		Stack Condi		Meter Box ID		26		-		K Factor	12	1
ect ID	Chemours	% Moisture	Assu		Meter Box Y Meter Box Del I	4	1.0107	<u>. </u>	-		Initial	Mid-Point	
de/Source ID	VE South - Scrubb				Probe ID / Leng		2.036-	4	Sample Tra	in (ft ³)	,006		
np. Loc. ID No.ID	<u>STK</u> 3	Silica gel (g)			Probe Material		Boro		Leak Check		17	7	7
t Method ID	3 M0010	CO2, % by Vo O2, % by Vol		9	Pitot / Thermoc Pitot Coefficient		<u>1</u> (0.84)	an a	Pitot leak ch Pitot Inspec	-	(765) / no (766) / no	yes / no	yeso i
e ID	21MAY2019	Temperature (°F) 88		Nozzle ID				Method 3 S	-	263 / no	yes/no yes/no	yesy
rce/Location	VE South Stack				Nozzle Measure			.300	Temp Che		Pre-Te	est Set	Post-Test
pe Date b. Press (in Hg)	20.29	Static Press (I	n H ₂ O) NG-27	.5	Avg Nozzle Dia Area of Stack (f		.300		Meter Box T	•	- 87		
rator	milica	Ambient Temp) (°F)	80-85	Sample Time	<u>-162</u>	96		Reference T Pass/Fail (+			/ Fail	Pass / Fr
	ins , he		<u>,</u>		Total Traverse I	Pts 2	¥			ge Response		V no	yes / no
SA	MPLE CLOCK TIME	VELOCITY	ORIFICE	DRY GAS METER									
A CONTRACT OF A	E (min) (plant time)	PRESSURE Delta	PRESSURE	READING (ft ³)	STACK	OGM OUTLET TEMP (oF)	PROBE	FILTER BOX TEMP	IMPINGER EXIT TEMP		XAD EXIT		COMMEN
	o 1741	P (in H2O)	Delta H (in H2O	643.72	TEMP (°F)		TEMP (oF)	(F)	(oF)	(in Hg)	TEMP (F)		
a an bench of the second second second second second	<u> </u>	1	1.1.	41.24	65	101	120	120	67	4	77		101 -
2	8	16	1.6	49.0	- 33+	100	120	122	21	12	66		643-1
3 1	2	el Y	1,4	51.4	95	100	120	126	22	<u> </u>	67		101
	6	114	1.4	54.7	94	100	119	119	66	4	63		
		17 40	1.9	56.9	93	100	120	120	66	4.	6Ź		
72	<u>4</u>	140	417	1777	22	100	170	120	62	7	63	<u> </u>	17+
4 2				63.7	GU -	700	12	122	62	<u> </u>	63		179
9 3		.15	13	6814	974	-151	117	175	22		67	·	rest
10 4	0	- 214	1.1	10,10	94	100	115	1195	15	4	64		100
	4	<u></u>	111	12.9	ar.	100	120	121	63	3	64		-1-5-
	8 1431	10.	1.3	675,01	B 94	100	119	119	66	3	67		675-0
	2 4 14,49	19	a	6 15.46	99	-10-7	1.1 1/2	170			10		175.4
		1.6	1.15	81.7	12	107	4.7	120	<i>Pf</i>		67.		
3 1	2 1500	12	1.35	84.1	66	101	120	122	66		84		
4 1	6	iv)	1.2	86,3	99	101	120	124	65	4	64	<u>+</u>	
	0 1508	- 18	1:8	89.4	ÅÝ	101	117	123	64	.4	62		
	<u> </u>	-19	1.9	92.4	99	103	117	118	63	4	65		
7 1			-+	94.7	96	10'9	112	111	64	4	62		
9 3		-14	114	720,0	96	103	+ 124	111	66	4	63		
	0		1145	730,0	96	102	112	112	66	3	64		
	4 1572	218	1.7	5.4"	96	102	111	112	40 66	3	63		
	8	111	int	707120	96	107	111	119	65	13	64		707-1
no	- LEAD	Avg Delta P	Avg Delta H	Total Volume	Avg Ts	Avg Tm	Min/Max	Min/Max	Max	Max Vac	Min/Max		101-1
WEST			Avg Sqrt Del H				1						

SAMPLE RECOVERY FIELD DATA

EPA Method 0010 - HFPO Dimer Acid

Client	. –				W.O. #					
Location/Pla	ant	Fayette	/ille, NC	Source	e & Location	1	VE South	n Stack		
Run No.	_1				Sample Date	5/22/	114	Recove	ery Date	5/22/19
Sample I.D.	Chemours - \	/E South - Scru	ibber - STK - 1 -	M0010 -	Analyst	Joo /1	22	Filter N	lumber	NA
					Imping	jer 🗧	·			
l	1	2	3	4	5	6	7	Imp.Total	8	Total
Contents	Empty	HPLC H20	HPLC H20			1		615.0	Silica Ge	
Final	10	105	100	0		216 2	279,0	6.45KA	3151	
Initial	0	100	100	0		305.3	2987	/	300	
Gain	12	5	0	D		10.7	0,2	26	15.1	41,1
Impinger Colo	or <u>G</u>	<u>11 cle</u>	ere,		Labeled?	\checkmark			1	_
Silica Gel Cor	ndition	de C	10 %		Sealed?	\mathcal{L}				
Run No.	2				Sample Date	5/23/1	G	Bassus	ry Date 🏅	123/15
		E South Som	bber - STK - 2 - I			-m-1	.1 20 C			NA
Sample I.D.		E South - Scru	DDer - STK - Z -	MUU1U -	Analyst			Filter N	umber	
	1	2	3	4	Imping 5	6	7	Imp.Total	8	Total
Contents	Empty	HPLC H20	HPLC H20			i			Silica Gel	Contraction and the second second second
Final	10	95	94	О		303,8	302.6		315	z
Initial	0	100	100	θ		291,9	302.2		300	
Gain	10	-5	-4	D	0	11,9	,4	12,3	15.3	27.6
Impinger Colo	or C	11 Cl	esi		Labeled?	1				
Silica Gel Con	ndition <u>L</u>	ste 9	0%		Sealed?					_
Run No.	3					5/22	11e		5	5/22/2
					Sample Date	Da h	17	Recover	-	<u> </u>
Sample I.D.	Chemours - V	E South - Scrul	bber - STK - 3 - I	/0010 -	Analyst -		<i>e)</i>	Filter N	umber	NA
	1	2	3	4	Imping 5	er - 6	7	Imp.Total	8	Total
Contents	Empty	HPLC H20	HPLC H20					mprota	Silica Gel	, otal
Final	15	100	100		310.9	300,2			3201	
Initial	0	100	100		2985	300.7			300	
Gain	19	Ο	0	-	12.0	0/		27	201	47,1
Impinger Color	r G	Il cle	u.		Labeled?	1	1			
Silica Gel Con	dition 6	L_ 91	Y		Sealed?					-
Check COC for	Sample IDs of			e Co	21 K	noor	Ke	51 0m	2	
			V-a-a-			n eor 500	1)90	C WA	SIC	
5/2	27/14 3/29)			J.	00	777			
-1~	-1-				-	60	(1, C)	9,6		
7/2	4/19				کر	$\mathcal{O}\mathcal{O}$	77	1,6		

Source Gas Analysis [Data Sheet - Modified Method 3/3A
Client Chemors	Analyst VS,
Location/Plant Fayeter)	Date 5/23/19
	Analyzer Make & Model Servomex Series 1400
W.O. Number 15418.002.014	

Calibration 5

Analysis Number	Span	Calibration Gas Value O ₂ (%)	Calibration Gas Value CO ₂ (%)	Analyzer Response O ₂ (%)	Analyzer Response CO ₂ (%)
1	Zero	0.00	0.00	0.00	0.00
2	Mid	12.06	9.018	12,1	9.0
3	High	21.25	17.05	20.3	17.1
	Avera	ge			

Run Number	Analysis Time	Analyzer Response O ₂ (%)	Analyzer Response CO ₂ (%)
1	08080815	20,8	0.01
2	1247-1255	20.8	0.02
3	1555-160	20.9	0.02
	Average		

Run Number	Analysis Time	Analyzer Response O ₂ (%)	Analyzer Response CO ₂ (%)
1			
2			
3			
	Average		

Span	Cylinder ID
Mid	C(157024
High	ALM047628

**Report all values to the nearest 0.1 percent

.

SAMPLE RECOVERY FIELD DATA

Client Location/Pla	int Fr	Uner Weth	nor "De	1 UCSource	W.O. # e & Locatior		ES	at	Sh	-
Run No.	31	l			Sample Date	5/23	2/14	Recov	ery Date	5/2
Sample I.D.					Analyst	m	C		Number	122
					Imping	ier	/ _ /			
Contents	1	2	3	4	5	6	7	Imp.Total		Total
Final	6	100	190	0		248.0	301.6		Silica Gel	
Initial	ŏ	200	100	0		2481	3926		300	_
Gain	D	0	0	0		-	D	0	0	0
Impinger Cold	or <u>4</u>	(1)	en,		Labeled?					
Silica Gel Co	ndition	<u>yle</u>	100%	2	Sealed?	$\overline{}$				-
Run No.			•		Sample Date	ə		Recove	əry Date	
Sample I.D.					Analyst				Number	
					Imping	er				
Contents	1	2	3	4	5	6	7	Imp.Total	8	Total
									Silica Gel	
<u>Final</u>										!
Initial Gain										
Impinger Cold	,				L					
		<u>_</u>			Labeled?					-
Silica Gel Cor					Sealed?					
Run No.				;	Sample Date	·		Recove	ery Date	
Sample I.D.					Analyst			Filter N	lumber	
					Imping					
Contents	1	2	3	4	5	6	7	imp.Total	8	Total
Final			_						Silica Gel	
Initial			·							
Gain										
Impinger Colo	l									
Silica Gel Con			_		Labeled?					•
			_		Sealed?					•

Check COC for Sample IDs of Media Blanks

APPENDIX C LABORATORY ANALYTICAL REPORT

Note: The complete analytical report is included on the attached CD.

Environment Testing TestAmerica

ANALYTICAL REPORT

Job Number: 140-15381-1 Job Description: VE South Stack Contract Number: LBIO-67048 For: Chemours Company FC, LLC The c/o AECOM Sabre Building, Suite 300 4051 Ogletown Road Newark, DE 19713

Attention: Michael Aucoin

Sourmerf Ackhis

Approved for release Courtney M Adkins Project Manager I 6/4/2019 7:59 AM

Courtney M Adkins, Project Manager I 5815 Middlebrook Pike, Knoxville, TN, 37921 (865)291-3000 courtney.adkins@testamericainc.com 06/04/2019

This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Table of Contents

Cover Title Page	1
Data Summaries	4
Definitions	4
Method Summary	5
Sample Summary	6
Case Narrative	7
QC Association	8
Client Sample Results	9
Default Detection Limits	12
Surrogate Summary	13
QC Sample Results	14
Chronicle	16
Certification Summary	20
Organic Sample Data	22
	22
8321A_HFPO_Du	22
8321A_HFPO_Du QC Summary	23
8321A_HFPO_Du Sample Data	27
Standards Data	39
8321A_HFPO_Du ICAL Data	39
8321A_HFPO_Du CCAL Data	62
Raw QC Data	65
8321A_HFPO_Du Blank Data	65
8321A_HFPO_Du LCS/LCSD Data	69
	77
8321A_HFPO_Du Prep Data	79

Table of Contents

Method DV-LC-0012	83
Method DV-LC-0012 QC Summary	84
Method DV-LC-0012 Sample Data	89
Standards Data	125
Method DV-LC-0012 CCAL Data	125
Raw QC Data	140
Method DV-LC-0012 Tune Data	140
Method DV-LC-0012 Blank Data	145
Method DV-LC-0012 LCS/LCSD Data	157
Method DV-LC-0012 Run Logs	165
Method DV-LC-0012 Prep Data	167
Shipping and Receiving Documents	177
Client Chain of Custody	178

Client: Chemours Company FC, LLC The Project/Site: VE South Stack

Qualifiers

LCMS Qualifier	Qualifier Description
D	Sample results are obtained from a dilution; the surrogate or matrix spike recoveries reported are calculated from diluted samples.
Х	Surrogate is outside control limits

Glossary

Ciccoury	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Method Summary

Client: Chemours Company FC, LLC The Project/Site: VE South Stack

Method	Method Description	Protocol	Laboratory
8321A	HFPO-DA	SW846	TAL DEN
8321A	PFOA and PFOS	SW846	TAL DEN
None	Leaching Procedure	TAL SOP	TAL DEN
None	Leaching Procedure for Condensate	TAL SOP	TAL DEN
None	Leaching Procedure for XAD	TAL SOP	TAL DEN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

TAL DEN = Eurofins TestAmerica, Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

Sample Summary

Client: Chemours Company FC, LLC The Project/Site: VE South Stack

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
140-15381-1	H-1505,1506 VES STACK R1 M0010 FH	Air	05/22/19 00:00	05/24/19 09:00
140-15381-2	H-1507,1508,1510 VES STACK R1 M0010 BH	Air	05/22/19 00:00	05/24/19 09:00
140-15381-3	H-1509 VES STACK R1 M0010 IMP 1,2&3 CONDENSATE	Air	05/22/19 00:00	05/24/19 09:00
140-15381-4	H-1511 VES STACK R1 M0010 BREAKTHROUGH XAD-2 RESIN TUBE	Air	05/22/19 00:00	05/24/19 09:00
140-15381-5	H-1512,1513 VES STACK R2 M0010 FH	Air	05/23/19 00:00	05/24/19 09:00
140-15381-6	H-1514,1515,1517 VES STACK R2 M0010 BH	Air	05/23/19 00:00	05/24/19 09:00
140-15381-7	H-1516 VES STACK R2 M0010 IMP 1,2&3 CONDENSATE	Air	05/23/19 00:00	05/24/19 09:00
140-15381-8	H-1518 VES STACK R2 M0010 BREAKTHROUGH XAD-2 RESIN TUBE	Air	05/23/19 00:00	05/24/19 09:00
140-15381-9	H-1519,1520 VES STACK R3 M0010 FH	Air	05/23/19 00:00	05/24/19 09:00
140-15381-10	H-1521,1522,1524 VES STACK R3 M0010 BH	Air	05/23/19 00:00	05/24/19 09:00
140-15381-11	H-1523 VES STACK R3 M0010 IMP 1,2&3 CONDENSATE	Air	05/23/19 00:00	05/24/19 09:00
140-15381-12	H-1525 VES STACK R3 M0010 BREAKTHROUGH XAD-2 RESIN TUBE	Air	05/23/19 00:00	05/24/19 09:00

Job Narrative 140-15381-1

Sample Receipt

The samples were received on May 24, 2019 at 9:00 AM in good condition and properly preserved. The temperatures of the 2 coolers at receipt time were 0.1° C and 0.1° C.

Quality Control and Data Interpretation

Unless otherwise noted, all holding times, and QC criteria were met and the test results shown in this report meet all applicable NELAC requirements.

Method 0010/Method 3542 Sampling Train Preparation

Train fractions were extracted and prepared for analysis in TestAmerica's Knoxville laboratory. Extracts and condensate samples were forwarded to the Denver laboratory for HFPO-DA analysis. All results are reported in "Total ug" per sample.

LCMS

Method 8321A: The Surrogate/Isotope Dilution Analyte (IDA) recovery associated with the following samples is below the method recommended limit: H-1511 VES STACK R1 M0010 BREAKTHROUGH XAD-2 RESIN TUBE (140-15381-4), (LCS 280-459570/2-A) and (MB 280-459556/1-A). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample(s). All detection limits are below the lower calibration.

preparation batch 280-459556 and 280-459570 and analytical batch 280-460289 HFPO

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Comments

Reporting Limits (RLs) and Method Detection Limits (MDLs) for the HFPO-DA used in this report were derived in Denver for reporting soils and water samples. Method 0010 sampling train matrix specific RLs and MDLs have not been established for HFPO-DA. The soil and water limits are expected to be reasonable approximations of the actual matrix specific limits, under these conditions.

Client: Chemours Company FC, LLC The Project/Site: VE South Stack

LCMS

Analysis Batch: 436957

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
DLCK 280-436957/13	Lab Control Sample	Total/NA	Air	8321A	
Prep Batch: 459556					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-15381-2	H-1507,1508,1510 VES STACK R1 M0010 BH	Total/NA	Air	None	
140-15381-4	H-1511 VES STACK R1 M0010 BREAKTHROUG	Total/NA	Air	None	
140-15381-6	H-1514,1515,1517 VES STACK R2 M0010 BH	Total/NA	Air	None	
140-15381-8	H-1518 VES STACK R2 M0010 BREAKTHROUC	Total/NA	Air	None	
140-15381-10	H-1521,1522,1524 VES STACK R3 M0010 BH	Total/NA	Air	None	
140-15381-12	H-1525 VES STACK R3 M0010 BREAKTHROUG	Total/NA	Air	None	
MB 280-459556/1-A	Method Blank	Total/NA	Air	None	
LCS 280-459556/2-A	Lab Control Sample	Total/NA	Air	None	
Prep Batch: 459570					

Lab Sample ID **Client Sample ID** Prep Type Matrix Method Prep Batch 140-15381-1 H-1505,1506 VES STACK R1 M0010 FH Total/NA Air None 140-15381-5 H-1512,1513 VES STACK R2 M0010 FH Total/NA None Air 140-15381-9 Total/NA None H-1519,1520 VES STACK R3 M0010 FH Air MB 280-459570/1-A Method Blank Total/NA Air None Total/NA LCS 280-459570/2-A Lab Control Sample None Air

Prep Batch: 459578

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
140-15381-3	H-1509 VES STACK R1 M0010 IMP 1,2&3 CONI	Total/NA	Air	None
140-15381-7	H-1516 VES STACK R2 M0010 IMP 1,2&3 CONI	Total/NA	Air	None
140-15381-11	H-1523 VES STACK R3 M0010 IMP 1,2&3 CONI	Total/NA	Air	None
MB 280-459578/1-A	Method Blank	Total/NA	Air	None
LCS 280-459578/2-A	Lab Control Sample	Total/NA	Air	None

Analysis Batch: 460289

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-15381-1	H-1505,1506 VES STACK R1 M0010 FH	Total/NA	Air	8321A	459570
140-15381-2	H-1507,1508,1510 VES STACK R1 M0010 BH	Total/NA	Air	8321A	459556
140-15381-3	H-1509 VES STACK R1 M0010 IMP 1,2&3 CONI	Total/NA	Air	8321A	459578
140-15381-4	H-1511 VES STACK R1 M0010 BREAKTHROUC	Total/NA	Air	8321A	459556
140-15381-5	H-1512,1513 VES STACK R2 M0010 FH	Total/NA	Air	8321A	459570
140-15381-6	H-1514,1515,1517 VES STACK R2 M0010 BH	Total/NA	Air	8321A	459556
140-15381-7	H-1516 VES STACK R2 M0010 IMP 1,2&3 CONI	Total/NA	Air	8321A	459578
140-15381-8	H-1518 VES STACK R2 M0010 BREAKTHROUG	Total/NA	Air	8321A	459556
140-15381-9	H-1519,1520 VES STACK R3 M0010 FH	Total/NA	Air	8321A	459570
140-15381-10	H-1521,1522,1524 VES STACK R3 M0010 BH	Total/NA	Air	8321A	459556
140-15381-11	H-1523 VES STACK R3 M0010 IMP 1,2&3 CONI	Total/NA	Air	8321A	459578
140-15381-12	H-1525 VES STACK R3 M0010 BREAKTHROUG	Total/NA	Air	8321A	459556
MB 280-459556/1-A	Method Blank	Total/NA	Air	8321A	459556
MB 280-459570/1-A	Method Blank	Total/NA	Air	8321A	459570
MB 280-459578/1-A	Method Blank	Total/NA	Air	8321A	459578
LCS 280-459556/2-A	Lab Control Sample	Total/NA	Air	8321A	459556
LCS 280-459570/2-A	Lab Control Sample	Total/NA	Air	8321A	459570
LCS 280-459578/2-A	Lab Control Sample	Total/NA	Air	8321A	459578

Client Sample Results

Job ID: 140-15381-1

Client Sample ID: H-1505, Date Collected: 05/22/19 00:00 Date Received: 05/24/19 09:00 Sample Container: Air Train	1506 VES	STACK	R1 M0010	FH		L	ab Sample	e ID: 140-15 Mat	381-1 trix: Air
Method: 8321A - PFOA and Pl						_			
Analyte HFPO-DA	Result 37.5	Qualifier	RL 1.02	0.110	Unit ug/Sample	_ D	Prepared 05/28/19 11:10	Analyzed 06/03/19 12:24	Dil Fac 10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	68		50 - 200				05/28/19 11:10	06/03/19 12:24	10
Client Sample ID: H-1507, Date Collected: 05/22/19 00:00 Date Received: 05/24/19 09:00 Sample Container: Air Train	1508,1510	VES ST	ACK R1 M	0010 B	н	L	ab Sample	e ID: 140-15 Mat	381-2 trix: Air
Method: 8321A - PFOA and PI	FOS								
Analyte HFPO-DA	Result 97.6	Qualifier		0.550	Unit ug/Sample	_ <u>D</u>	Prepared 05/28/19 11:10	Analyzed	Dil Fac 10
nffo-da	97.0		2.75	0.550	ug/Sample		03/20/19 11.10	00/03/19 11.24	10
Surrogate 13C3 HFPO-DA	%Recovery 57		Limits				Prepared 05/28/19 11:10	Analyzed	Dil Fac 10
Client Sample ID: H-1509 CONDENSATE Date Collected: 05/22/19 00:00 Date Received: 05/24/19 09:00 Sample Container: Air Train	VESSIA		0010 IMP 1	,2&3		L	ab Sample	e ID: 140-15 Mat	trix: Air
Method: 8321A - HFPO-DA									
Analyte		Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed 06/03/19 12:50	Dil Fac
HFPO-DA	10.3		0.220	0.0112	ug/Sample		05/28/19 12:21	06/03/19 12:50	1
Surrogate 13C3 HFPO-DA	%Recovery 57	Qualifier	Limits 50 - 200				Prepared 05/28/19 12:21	Analyzed 06/03/19 12:50	Dil Fac
Client Sample ID: H-1511 BREAKTHROUGH XAD-2 Date Collected: 05/22/19 00:00 Date Received: 05/24/19 09:00 Sample Container: Air Train			0010			L	ab Sample	e ID: 140-15 Mat	381-4 trix: Air
Method: 8321A - PFOA and Pl	FOS								
Analyte HFPO-DA	Result ND	Qualifier		MDL	Unit ug/Sample	D	Prepared 05/28/19 11:10	Analyzed 06/03/19 11:28	Dil Fac
			0.200	0.0400	ug/Sample		03/20/19 11.10	00/03/19 11.20	I
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	47	X	50 - 200				05/28/19 11:10	06/03/19 11:28	1
Client Sample ID: H-1512, Date Collected: 05/23/19 00:00 Date Received: 05/24/19 09:00 Sample Container: Air Train	1513 VES	STACK	R2 M0010	FH		La	ab Sample	e ID: 140-15 Mat	381-5 rix: Air
Method: 8321A - PFOA and Pl	FOS								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
HFPO-DA	22.1		1.01	0.109	ug/Sample		05/28/19 11:10	06/03/19 12:27	10
							Eurofins Te	estAmerica, K	noxville

Client Sample ID: H-1512, Date Collected: 05/23/19 00:00 Date Received: 05/24/19 09:00	1513 VES	STACK	R2 M0010) FH		L	ab Sample	e ID: 140-15 Ma	5381-5 trix: Air
Sample Container: Air Train									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	65	-	50 - 200				05/28/19 11:10	-	10
Client Sample ID: H-1514,	1515 1517				u	_	ah Samala	ə ID: 140-15	201 6
Date Collected: 05/23/19 00:00	1515,1517	VE3 3			п		an Sample		trix: Air
Date Received: 05/24/19 09:00								Ivid	
Sample Container: Air Train									
	-00								
Method: 8321A - PFOA and PI Analyte		Qualifier	RL	МОІ	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	17.8	quanner	0.275		ug/Sample		05/28/19 11:10	•	1
					0				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	50		50 - 200				05/28/19 11:10	06/03/19 11:31	1
Client Sample ID: H-1516	VES STAG	CK R2 M	0010 IMP	1,2&3		L	ab Sample	D: 140-15	5381-7
CONDENSATE							-		
Date Collected: 05/23/19 00:00								Ma	trix: Air
Date Received: 05/24/19 09:00									
Sample Container: Air Train									
Method: 8321A - HFPO-DA									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	3.01		0.192	0.00979	ug/Sample		05/28/19 12:21	06/03/19 12:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	59	Quaimer	50 - 200				05/28/19 12:21	•	1
Client Sample ID: H-1518			0010			L	ab Sample	e ID: 140-15	5381-8
BREAKTHROUGH XAD-2	RESIN TU	BE							
Date Collected: 05/23/19 00:00								Ma	trix: Air
Date Received: 05/24/19 09:00									
Sample Container: Air Train									
Method: 8321A - PFOA and PI	FOS								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	ND		0.200	0.0400	ug/Sample		05/28/19 11:10	06/03/19 11:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	51		50 - 200				05/28/19 11:10	•	1
			D0 140044					10.440.44	004 0
Client Sample ID: H-1519,	1520 VES	STACK	R3 MUU10	JFH		_ L	ab Sample	D: 140-15	
Date Collected: 05/23/19 00:00 Date Received: 05/24/19 09:00								IVIA	trix: Air
Sample Container: Air Train									
Method: 8321A - PFOA and Pl		0			11-14	-	D	A	D
Analyte HFPO-DA		Qualifier			Unit ug/Sample	D	Prepared 05/28/19 11:10	Analyzed 06/03/19 12:31	Dil Fac
	18.7		0.120	0.0130	uy/Sample		0012011911.10	00/03/18 12.31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	56		50 - 200				05/28/19 11:10	06/03/19 12:31	1

06/04/2019

Job ID: 140-15381-1

Client Sample ID: H-1521,1522,1524 VES STACK R3 M0010 BH Date Collected: 05/23/19 00:00 Date Received: 05/24/19 09:00 Sample Container: Air Train				La	ab Sample	ID: 140-153 Ma	381-10 trix: Aiı		
Method: 8321A - PFOA and PI	505								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA	35.7		0.275	0.0550	ug/Sample		05/28/19 11:10	06/03/19 11:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	52		50 - 200				05/28/19 11:10	06/03/19 11:37	1
Client Sample ID: H-1523	VES STAC		0010 IMP 1	,2&3		La	ab Sample	ID: 140-153	381-11
CONDENSATE									
Date Collected: 05/23/19 00:00								Ma	trix: Aiı
Date Received: 05/24/19 09:00									
Sample Container: Air Train									
Method: 8321A - HFPO-DA Analyte	Posult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEPO-DA	5.13	Quaimer	0.228		ug/Sample		05/28/19 12:21	06/03/19 12:57	1
	0.10		0.220	0.0110	ug/oumpic		00/20/10 12:21	00/00/10 12:07	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C3 HFPO-DA	56		50 - 200				05/28/19 12:21	06/03/19 12:57	1
Client Sample ID: H-1525	VES STAC	CK R3 M	0010			La	ab Sample	ID: 140-153	381-12
BREAKTHROUGH XAD-2	RESIN TU	BE							
Date Collected: 05/23/19 00:00								Ma	trix: Aiı
Date Received: 05/24/19 09:00									
Sample Container: Air Train									
Method: 8321A - PFOA and PF						_			
Analyte		Qualifier		MDL		D	Prepared	Analyzed	Dil Fac
HFPO-DA	ND		0.200	0.0400	ug/Sample		05/28/19 11:10	06/03/19 11:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

APPENDIX D SAMPLE CALCULATIONS

SAMPLE CALCULATIONS FOR HFPO DIMER ACID (METHOD 0010)

<u>Client: Chemours</u> <u>Test Number: Run 3</u> <u>Test Location: VE South Stack</u> <u>Plant: Fayetteville, NC</u> <u>Test Date: 05/23/19</u> <u>Test Period: 1341-1536</u>

1. HFPO Dimer Acid concentration, lbs/dscf.

Conc1	=	W x 2.2046 x 10 ⁻⁹
Conc1	=	59.5 x 2.2046 x 10-9 60.861
Conc1	=	2.16E-09
Where:		
W	=	Weight of HFPO Dimer Acid collected in sample in ug.
Conc1	=	Division Stack HFPO Dimer Acid concentration, lbs/dscf.
2.2046x10 ⁻⁹	=	Conversion factor from ug to lbs.

2. HFPO Dimer Acid concentration, ug/dscm.

Conc2 =	W / (Vm(std) x 0.02832)
Conc2 =	59.5 / (60.861 x 0.02832)
Conc2 =	34.53
Where:	
Conc2 =	Division Stack HFPO Dimer Acid concentration, ug/dscm.
0.02832 =	Conversion factor from cubic feet to cubic meters.

3. HFPO Dimer Acid mass emission rate, lbs/hr.

MR1 _(Outlet) =	Conc1 x Qs(std) x 60 min/hr
MR1 _(Outlet) =	2.16E-09 x 12055 x 60
MR1 _(Outlet) =	1.56E-03
Where:	
MR1 _(Outlet) =	Division Stack HFPO Dimer Acid mass emission rate, lbs/hr.

4. HFPO Dimer Acid mass emission rate, g/sec.

MR2 _(Outlet) =	PMR1 x 453.59 / 3600
MR2 _(Outlet) =	1.56E-03 x 453.59/3600
MR2 _(Outlet) =	1.96E-04
Where:	
MR2 _(Outlet) =	Division Stack HFPO Dimer Acid mass emission rate, g/sec.
453.6 =	Conversion factor from pounds to grams.
3600 =	Conversion factor from hours to seconds.

EXAMPLE CALCULATIONS FOR VOLUMETRIC FLOW AND MOISTURE AND ISOKINETICS

<u>Client: Chemours</u> <u>Test Number: Run 3</u> <u>Test Location: VE South Stack</u> Facility: Fayetteville, NC Test Date: 05/23/19 Period: 1341-1536

1. Volume of dry gas sampled at standard conditions (68 deg F, 29.92 in. Hg), dscf.

Vm(std) =	delta H 17.64 x Y x Vm x (Pb +
	(111 + 400)
	1.533 17.64 x 1.0107 x 63.015 x (30.28 +
Vm(std) =	= 60.861 101.04 + 460
Where:	
Vm(std) =	Volume of gas sample measured by the dry gas meter, corrected to standard conditions, dscf.
Vm =	Volume of gas sample measured by the dry gas meter at meter conditions, dcf.
Pb =	Barometric Pressure, in Hg.
delt H =	Average pressure drop across the orifice meter, in H_2O
Tm =	Average dry gas meter temperature , deg F.
Y =	Dry gas meter calibration factor.
17.64 =	Factor that includes ratio of standard temperature (528 deg R) to standard pressure (29.92 in. Hg), deg R/in. Hg.
13.6 =	Specific gravity of mercury.

2. Volume of water vapor in the gas sample corrected to standard conditions, scf.

Vw(std) =	(0.04707 x Vwc) + (0.04715 x Wwsg)
Vw(std) =	(0.04707 x 27.0) + (0.04715 x 20.1) = 2.22
Where:	
Vw(std) =	Volume of water vapor in the gas sample corrected to standard conditions, scf.
Vwc =	Volume of liquid condensed in impingers, ml.
Wwsg =	Weight of water vapor collected in silica gel, g.
0.04707 =	Factor which includes the density of water
	(0.002201 lb/ml), the molecular weight of water
	(18.0 lb/lb-mole), the ideal gas constant
	21.85 (in. Hg) (ft ³)/lb-mole)(deg R); absolute
	temperature at standard conditions (528 deg R), absolute
	pressure at standard conditions (29.92 in. Hg), ft ³ /ml.
0.04715 =	Factor which includes the molecular weight of water
	(18.0 lb/lb-mole), the ideal gas constant
	21.85 (in. Hg) (ft ³)/lb-mole)(deg R); absolute
	temperature at standard conditions (528 deg R), absolute
	pressure at standard conditions (29.92 in. Hg), and
	453.6 g/lb, ft ³ /g.
	10010 810, 10 8

3. Moisture content

	Vw(std)
bws =	
	Vw(std) + Vm(std)
	2.22
bws =	= 0.035
	2.22 + 60.861

Where:

bws =	Proportion of water vapor, by volume, in the gas
	stream, dimensionless.

4. Mole fraction of dry gas.

Md =	1 - bws
Md =	1 - 0.035 = 0.965
Where:	
Md =	Mole fraction of dry gas, dimensionless.

5. Dry molecular weight of gas stream, lb/lb-mole.

MWd =	(0.440 x % CO ₂) + (0.320 x % O ₂) + (0.280 x (% N ₂ + % CO))
MWd =	$(0.440 \ge 0.0) + (0.320 \ge 20.9) + (0.280 \ge (79.1 + 0.00))$
MWd =	28.84
Where:	
MWd =	Dry molecular weight, lb/lb-mole.
% CO2 =	Percent carbon dioxide by volume, dry basis.
% O ₂ =	Percent oxygen by volume, dry basis.
% N ₂ =	Percent nitrogen by volume, dry basis.
% CO =	Percent carbon monoxide by volume, dry basis.
0.440 =	Molecular weight of carbon dioxide, divided by 100.
0.320 =	Molecular weight of oxygen, divided by 100.
0.280 =	Molecular weight of nitrogen or carbon monoxide,
	divided by 100.

6. Actual molecular weight of gas stream (wet basis), lb/lb-mole.

MWs =	(MWd x Md) + (18 x (1 - Md))
MWs =	(28.84 x 0.965) +(18 (1 - 0.965)) = 28.45
Where:	
MWs = 18 =	Molecular weight of wet gas, lb/lb-mole. Molecular weight of water, lb/lb-mole.

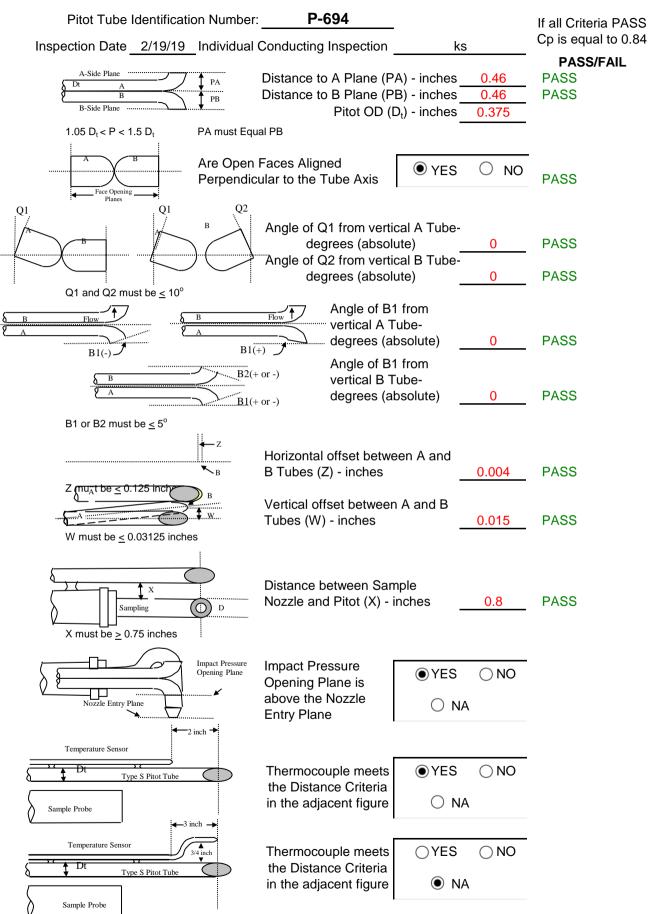
7. Average velocity of gas stream at actual conditions, ft/sec.

Vs =	Ts (avg) 85.49 x Cp x ((delt p) ^{1/2})avg x (³) ² Ps x MWs
Vs =	554 85.49 x 0.84 x 0.38979 x (
Where:	
Vs =	Average gas stream velocity, ft/sec.
05.40	(lb/lb-mole)(in. Hg) ^{1/2}
85.49 =	Pitot tube constant, ft/sec x
Cp =	Pitot tube coefficient, dimensionless.
Ts =	Absolute gas stream temperature, deg $R = Ts$, deg $F + 460$.
	P(static)
Ps =	Absolute gas stack pressure, in. Hg. = Pb +
delt p =	13.6 Velocity head of stack, in. H ₂ O.

8. Average gas stream volumetric flow rate at actual conditions, wacf/min.

Qs(act) =	60 x Vs x As
Qs(act) =	60 x 22.4 x 9.62 = 12951
Where:	
Qs(act) =	Volumetric flow rate of wet stack gas at actual conditions, wacf/min.
As =	Cross-sectional area of stack, ft ² .
60 =	Conversion factor from seconds to minutes.

9. Average gas stream dry volumetric flow rate at standard conditions, dscf/min.


Qs(std) =	Ps 17.64 x Md x x Qs(act) Ts
Qs(std) =	30.32 17.64 x 0.965 x x 12951 554.3
Qs(std) =	12055
Where:	
Qs(std) =	Volumetric flow rate of dry stack gas at standard conditions, dscf/min.

10. Isokinetic variation calculated from intermediate values, percent.

I =	17.327 x Ts x Vm(std)
1 -	$Vs \ge O \ge Ps \ge Md \ge (Dn)^2$
Ĭ =	17.327 x 554 x 60.861
1 -	22.4 x 96 x 30.32 x 0.965 x (0.300)^2
Where:	
I =	Percent of isokinetic sampling.
O =	Total sampling time, minutes.
Dn =	Diameter of nozzle, inches.
17.327 =	Factor which includes standard temperature (528 deg R), standard pressure (29.92 in. Hg), the formula for calculating area of circle D^{24} , conversion of square feet to square inches (144), conversion of seconds to minutes (60), and conversion to percent (100), (in. Hg)(in ²)(min) (deg R)(ft ²)(sec)

APPENDIX E EQUIPMENT CALIBRATION RECORDS

Type S Pitot Tube Inspection Data Form

Airgas Specialty Gases Airgas USA, LLC 6141 Easton Road Bldg 1 Plumsteadville, PA 18949 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number:
Cylinder Number:
Laboratory:
PGVP Number:
Gas Code:

E03NI79E15A00E4 CC157024 124 - Plumsteadville - PA A12019 CO2,O2,BALN

Reference Number: Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date:

160-401424145-1 150.5 CF 2015 PSIG 590 Feb 26, 2019

Expiration Date: Feb 26, 2027

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

ANALYTICAL RESULTS									
Component		Requested Concentration	Actual Protocol Concentration Method		Total Relative Uncertainty	Assay Dates			
CARBON [DIOXIDE	9.000 %	9.018 %	G1	+/- 0.6% NIST Traceable	e 02/26/2019			
OXYGEN		12.00 %	12.06 %	G1	+/- 0.3% NIST Traceable	e 02/26/2019			
NITROGEN	N	Balance			-				
CALIBRATION STANDARDS									
Туре	Lot ID	Cylinder No	Concentration		Uncertainty	Expiration Date			
NTRM	061507	K014984	13.94 % CARBON D	IOXIDE/NITROGEN	0.57%	Jan 30, 2024			
NTRM	16060507	CC401541	23.204 % OXYGEN/NITROGEN		0.2%	Dec 24, 2021			
			ANALYTICAL	EQUIPMEN	Γ				
Instrument/Make/Model		Analytical Principle		Last Multipoint Ca	libration				
HORIBA V	A5011 T5V6VU	19P NDIR CO2	NDIR		Feb 12, 2019				
SIEMENS	OXYMAT 61 SC	01062 O2	PARAMAGNETIC		Feb 18, 2019				

Triad Data Available Upon Request

Airgas Specialty Gases Airgas USA, LLC 600 Union Landing Road Cinnaminson, NJ 08077-0000 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code:

E03NI62E15A0224 ALM047628 124 - Riverton (SAP) - NJ B52018 CO2,O2,BALN

Reference Number: 82-401288925-1 Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date:

157.2 CF 2015 PSIG 590 Sep 04, 2018

Expiration Date: Sep 04, 2026

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical analytical for the second standard for the s uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

ANALYTICAL RESULTS								
Component		Requested Concentration			Total Relative Uncertainty	Assay Dates		
CARBON I	DIOXIDE	17.00 %	17.05 %	G1	+/- 0.7% NIST Traceable	09/04/2018		
OXYGEN		21.00 %	21.25 %	G1	+/- 0.5% NIST Traceable	09/04/2018		
NITROGE	NITROGEN Balance -							
CALIBRATION STANDARDS Type Lot ID Cylinder No Concentration Uncertainty Expiration Date								
NTRM	13060804	CC415400	24.04 % CARBON D	IOXIDE/NITROGEN	+/- 0.6%	May 16, 2019		
NTRM	09061420	CC273671	22.53 % OXYGEN/NITROGEN		+/- 0.4%	Mar 08, 2019		
			ANALYTICAL	EQUIPMENT	I			
Instrument/Make/Model			Analytical Principle		Last Multipoint Calibration			
Horiba VIA	510-CO2-19G	YCXEG	NDIR		Aug 09, 2018			
Horiba MP	A 510-O2-7TW	MJ041	Paramagnetic		Aug 09, 2018			

Triad Data Available Upon Request

INTERFERENCE CHECK

Date: 12/4/14-12/5/14 Analyzer Type: Servomex - O₂ Model No: 4900 Serial No: 49000-652921 Calibration Span: 21.09 % Pollutant: 21.09% O₂ - CC418692

INTERFERENT GAS	INTERFERENT GAS RESPONSE (%)	INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (%)	% OF CALIBRATION SPAN ^(a)		
CO ₂ (30.17% CC199689)	0.00	-0.01	0.00		
NO (445 ppm CC346681)	0.00	0.02	0.11		
NO ₂ (23.78 ppm CC500749)	NA	NA	NA		
N ₂ O (90.4 ppm CC352661)	0.00	0.05	0.24		
CO (461.5 ppm XC006064B)	0.00	0.02	0.00		
SO ₂ (451.2 ppm CC409079)	0.00	0.05	0.23		
CH ₄ (453.1 ppm SG901795)	NA	NA	NA		
H ₂ (552 ppm ALM048043)	0.00	0.09	0.44		
HCl (45.1 ppm CC17830)	0.00	0.03	0.14		
NH ₃ (9.69 ppm CC58181)	0.00	0.01	0.03		
	TOTAL INTERFERENCE RESPONSE				
	METHOD SPECIFICATION		< 2.5%		

^(a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences.

Chad Walker

INTERFERENCE CHECK

<u>Date: 12/4/14-12/5/14</u> <u>Analyzer Type: Servomex - CO₂</u> <u>Model No: 4900</u> <u>Serial No: 49000-652921</u> <u>Calibration Span: 16.65%</u> <u>Pollutant: 16.65% CO₂ - CC418692</u>

	ANALYZEI	RESPONSE			
INTERFERENT GAS	INTERFERENT GAS RESPONSE (%)	INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (%)	% OF CALIBRATION SPAN ^(a)		
CO ₂ (30.17% CC199689)	NA	NA	NA		
NO (445 ppm CC346681)	0.00	0.02	0.10		
NO ₂ (23.78 ppm CC500749)	0.00	0.00	0.02		
N ₂ O (90.4 ppm CC352661)	0.00	0.01	0.04		
CO (461.5 ppm XC006064B)	0.00	0.01	0.00		
SO ₂ (451.2 ppm CC409079)	0.00	0.11	0.64		
CH ₄ (453.1 ppm SG901795)	0.00	0.07	0.44		
H ₂ (552 ppm ALM048043)	0.00	0.04	0.22		
HCl (45.1 ppm CC17830)	0.10	0.06	0.60		
NH ₃ (9.69 ppm CC58181)	0.00	0.02	0.14		
	TOTAL INTERFERENCE RESPONSE				
	METHOD SPECIFICATION		< 2.5%		

^(a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences.

Chad Walker

52

Date	18-Jan-19	-	Meter Box Number Wet Test Meter Number		r Number <u>26</u> Ambient Temp <u>7</u> Th Ther <u>P-2952</u> Temp Reference Source		Ambient Temp 71 Thermocouple (Accuracy - Temp Reference Source (Accuracy -		Simulator -/- 1°F)		
			Dry Gas	s Meter Number	16300942		ſ	Baro Press, in	00.70		
Setting	Gas	Volume		Temper	atures			Hg (Pb)	29.79		
Orifice Ianometer	Wet Test Meter	Dry gas Meter	Wet Test Meter	I	Dry Gas Meter			Calibration Results			
in H₂0	ft ³	ft ³	°F	Outlet, °F	Inlet, °F	Average, °F	Time, min	N/			
(∆H)	(Vw)	(Vd)	(Tw)	(Td _o)	(Td _i)	(Td)	(O)	Y	ΔH		
		4.524		72.00	72.00						
0.5	5.0	9.510	71.0	73.00	73.00	72.5	13.5	1.0044	2.0538		
		4.986		72.50	72.50						
		9.510	= 4.0	72.00	72.00	70.5	10.0	4 0000			
1.0	7.0	16.455	71.0	73.00	73.00	72.5	13.3	1.0083	2.0341		
		6.945 16.455		72.50 73.00	72.50 73.00						
1.5	10.0	26.361	71.0	74.00	74.00	73.5	16.0	1.0105	2.1596		
1.0	10.0	9.906	71.0	73.50	73.50		10.0	10.0	1.0100	2.1000	
		26.361		74.00	74.00						
2.0	10.0	36.233	71.0	76.00	76.00	75.0	13.5	1.0156	2.0442		
		9.872		75.00	75.00						
		36.233		76.00	76.00						
3.0	10.0	46.119	71.0	77.00	77.00	76.5	11.3	1.0145	2.1423		
		9.886		76.50	76.50						
							Average	1.0107	2.0868		
v - Gas Volum	ne passing thi	rough the wet test n	neter	0 - Time of calibra	ition run	-					
d - Gas Volume passing through the dry gas meter Pb - Barometric Pressure $Y = -\frac{W}{\pi}$				= <u>VW * Pb *</u>	* (td + 460)						
v - Temp of ga di - Temp of th		test meter the dry gas meter		∆H - Pressure difference orifice	erential across		Vd * Pb + $\frac{(\Delta I)}{13}$	(td + 460) $\frac{H}{.6} (tw + 460)$			
lo - Temp of t	he outlet gas	of the dry gas meters in the dry gas met		Y - Ratio of accura meter to dry gas n	•		_	$\left[\frac{1}{60}\right] * \left[\frac{(tw + 460)}{Vw}\right]$	_		

Long Cal and Temperature Cal Datasheet for Standard Dry Gas N	Meter Console
---	---------------

Reference Temperature Select Temperature	Temperature Reading from Individual Thermocouple Input ¹ Channel Number						Average Temperature Reading	Temp Difference ² (%)
○ °C ● °F -	1	2	3	4	5	6		
32	31	31	31	31	31		31.0	0.2%
212	212	212	212	212	212		212.0	0.0%
932	931	931	931	931	931		931.0	0.1%
1832	1830	1830	1830	1830	1830		1830.0	0.1%
- Channel Temps must agree wi	th +/- 5°F or 3°C		., [(Reference	e Temp(°F)+46	60)-(Test Temp	(°F)+460)]		

2 - Acceptable Temperature Difference less than 1.5 %

 $\left[\frac{\left(\text{Reference Temp}(^{\circ}F) + 460\right) - \left(\text{Test Temp}(^{\circ}F) + 460\right)}{\text{Reference Temp}(^{\circ}F) + 460}\right]$ Temp Diff =

Y Factor Calibration Check Calculation MODIFIED METHOD 0010 TEST TRAIN VE SOUTH STACK METER BOX NO. 26 05/22/2019 & 05/23/2019

	Run I	Run 2	Run 3
MWd = Dry molecular weight source gas, lb/lb-mole.			
0.32 = Molecular weight of oxygen, divided by 100.			
0.44 = Molecular weight of carbon dioxide, divided by 100.			
0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100.			
% CO ₂ = Percent carbon dioxide by volume, dry basis.	0.0	0.0	0.0
$\% O_2 =$ Percent oxygen by volume, dry basis.	20.9	20.9	20.9

 $MWd = (0.32 * O_2) + (0.44 * CO_2) + (0.28 * (100 - (CO_2 + O_2)))$

MWd = (0.32 * 20.9) + (0.44 * 0) + (0.28 * (100 - (0 + 20.9)))

MWd = (6.69) + (0.00) + (22.15)

$\mathbf{MWd} =$	28.84	28.84	28.84
$Tma = Source Temperature, absolute(^{\circ}R)$			
Tm = Average dry gas meter temperature , deg F.	84.0	93.1	101.0

Tma = Ts + 460

Tma = 83.96 + 460

Tma =

Ps = Absolute meter pressure, inches Hg.			
13.60 = Specific gravity of mercury.			
delta H = Avg pressure drop across the orifice meter during sampling, in H2O	1.47	1.27	1.53
Pb = Barometric Pressure, in Hg.	30.20	30.28	30.28

Pm = Pb + (delta H / 13.6)

Pm = 30.2 + (1.467916666666667 / 13.6)

Pm =

553.13

561.04

D.... 1

543.96

Yqa = dry gas meter calibration check value, dimensionless. 0.03 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2. 29.00 = dry molecular weight of air, lb/lb-mole. Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.Y = Dry gas meter calibration factor (based on full calibration)57.096 63.015 60.826 1.0107 1.0107 1.0107 Delta H@ = Dry Gas meter orifice calibration coefficient, in. H2O. 2.0868 2.0868 2.0868 avg SQRT Delta H = Avg SQRT press. drop across the orifice meter during sampling , in. $\rm H_{2}O$ 1.2036 1.1219 1.2326 O = Total sampling time, minutes. 96 96 96

 $Yqa = (O \ / \ Vm \) * SQRT \ (\ 0.0319 * Tma * 29 \) \ / \ (\ Delta \ H@ * Pm * MWd \) \quad * avg \ SQRT \ Delta \ H$

Yqa = (96.00 / 60.83) * SQRT (0.0319 * 543.96 * 29) / (2.09 * 30.31 * 28.84) * 1.20

Yqa = 1.578 * SQRT 503.216 / 1,823.903 * 1.20

Yqa =	0.9978	0.9981	1.0004
Diff = Absolute difference between Yqa and Y	1.28	1.25	1.02

Diff = ((Y - Yqa) / Y) * 100

Diff = ((1.0107 - 0.998) / 1.0107) * 100

Average Diff = 1.18

Allowable = 5.0

APPENDIX F LIST OF PROJECT PARTICIPANTS

The following Weston employees participated in this project.

Jeff O'Neill	Senior Project Manager	
Kris Ansley	Team Member	
Kyle Schweitzer	Team Member	
Nick Guarino	Team Member	